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Chapter 1

Introduction

Ths work concerns a study of the difference between the large scale structure
of the Universe and the properties of structures on smaller scales, down to the
size of galaxies. Whereas large scale structure is totally unrelaxed, structure on
smaller scales appears to be virialized. In the case of the Abell clusters, this
can be understood as a consequence of gravitational effects. It has been shown
that e.g. the cluster-cluster correlation function can be reproduced with a model
based on pressure-free sellgravity [Wey89]. Bigger and smaller scales have not
yet been encompassed by a single cosmogenesis.

The problem treated here was to see whether dissipative processes may pro-
vide an entrance. To do so, the effect of dynamical friction in an N-body model
has been studied. Therefore the structures have been separated into four dif-
ferent topological features (voids, walls, filaments and nodes) with different
geometric dilutions (r° for walls, 7~! for filaments and 7~ for nodes). Due to
these geometrical effects, dissipative phenomena were found to be different in
the three cases. One may suppose that these differences are due to the prop-
erties of the dark matter. Different core-sizes and internal velocity dispersions
of galaxies were taken as parameters for dynamical friction. They could corre-
spond e.g. to different halo sizes of brown dwarfs which are optically too red to
have been remarked until now !

The work consists of the study of three dimensional self-gravitating motion
of model galaxies with varying degrees of ‘stickiness’ in a background potential
corresponding to each one of the three different geometric dilutions. To do
so, pressure-free selfgravity was considered as a reasonable approximation for
cosmic structure formation on a 100 Mpc scale.

The protogalactic clouds in the former Universe are assumed to behave like a
stacking of expanding underdense regions as it follows from the “Bubble Theo-
rem”. Therefrom a mass distribution with the topological different constituents
wall, filament and node evolves. We assumed for this work that galaxies form
early, so dissipation can be due to dynamical friction between whole galaxies. An

1Maybe in the near future some light will be shed on this: It is planned
within the Infrared Space Observatory to measure the accumulated radiation of
a galactic halo of brown dwarfs [Lac90].




N-body code, suitable to investigate the flow of model-galaxies in different back-
ground potentials in a cubic structure with periodical boundary conditions has
been developed and is described in the Appendix. The equations of motion have
been solved by a differential equation solver algorithm of type Bulirsch-Stoer
(cf. Press et al. [Pres6]). The selfgravity of the particles has been evaluated
using a simple direct summation scheme. The results of the computations have
been analyzed in phase-space in time and, to separate out numerical effects
due to the N-body algorithm used, the energy and momentum behaviour of the
particles has been investigated.

For different parameters of dissipation, the throughput of dissipation on the
velocity distribution of the particles has been investigated.

The results of these computations may serve as input for one- dimensional
calculations on the CMBR constraints obtained from the satellite COBE.




Chapter 2

Voids, Walls, Filaments
and Nodes in the Universe

2.1 Brief Historical Intoduction

In the 18th. century, J.H. Lambert founded a hierarchic world model where
systems of lower order are connected to higher order systems ad infinitum. We
know today that there is a hierarchy in the Universe: Systems of first order are
the planets and satellites, systems of second order are planets and stars, systems
of 3rd order are the star clusters, those of 4th order are the galaxies. Systems of
5th order are the clusters of galaxies and systems of 6th order are the clusters
of clusters of galaxies: the superclusters.

Whereas it appeared 20 years ago not yet as certain whether superclusters
exist, today we know that they do. A review on superclusters and observational
properties on large scale structure was written by Qort 1983 [0or83]. For the
aim of this work is to elucidate properties of large scale structure, we first recall
the observational evidence for it.

More recently, a review [Bah88] has been written about the large-scale struc-
ture in the universe indicated by galaxy clusters. Whereas earlier observa-
tions gave evidence for galaxies to cluster on scales < 20 h~! Mpe (Ho =
thOkms'lMpc"l) whereas the universe on a larger scale (> 20 A~' Mpc
) seemed randomly distributed, observational evidence for structure on scales
~ 100 Mpc has been found. This large-scale structure is yet totally unrelaxed;
It is taken to be a good tracer of the process of galaxy formation. Clusters on
the scale 100 A=! Mpc are refered to as superclusters of clusters.

From galaxy redshift surveys, a netlike or “spongy” structure and voids to
scales of ~ 100 h~! Mpc have been revealed. Voids on these scales are reviewed
by Rood [Roo88].




2.2 Different Topological Entities

The approach tried by this work is founded on the classification of the large-scale
structure into geometric different entities, namely in voids, walls, filaments and
nodes. The largest wall detected has a minimum extent of 60 A~! Mpc x 170
h=! Mpc [Gel89]. Filament structure has been found within the CfA redshift
surveys (cl. e.g. [Huc83]) to be real while using a filament finding algorithm
(minimal spanning tree) by Bhavsar et al. [Bha88].

Using a model for pressure-free selfgravitating formation of large-scale struc-
ture, the rich Abell clusters [Abe58] could be identified to be the nodes in an
expanding cell-like structure [Wey89]. For a review on this so-called Vorono:-
model ! see Icke et al. [Ick91]. This model canonical implies the topological
different structures walls, filaments and nodes. It is based on a theorem that
states that the formation of structure on large scales can be understood from
empty regions in space expanding pressure-free selfgravitating and thereby be-
coming more and more spherical {“Bubble-Theorem”, Icke (1983)).

The Voronoi model allows to predict mass flow between the topological dif-
ferent ingredients wall, filament and node (cf. [Ick91b]). For the different ge-
ometric dilutions (r° for walls, ! for filaments and r—2 for nodes) can be
characterisized in one dimension, the model is especially suitable for studying
the formation of large scale structure in one dimension. This means that one
can study with much higher precision than is possible with 3D N-body or gas-
flow models, since the number of particles N needed to fill a 3D volume of size
L increases with L3, whereas the Poisson error due to statistical fluctuations
decreases only with ¥/N. Finally this could permit to verify constraints on
the CMBR found by COBE [Ben92] while studying different scenarios (in par-
ticular the ‘explosion’-scenario [0st88], the ‘adhesion’scenario [Sha89] or the
pressure-free selfgravitating scenario [Pee80]).

However, the aim of this work lies well below the last mentioned items: In the
following Sections we will see the effects of dynamical friction (see, e.g. [Tre84]
and the Appendix) on the flow of model galaxies in the different canonical
potentials of a Voronoi foam (wall, filament and node). Whether we are allowed
to do so depends on the time scale on which galaxies are forming [Thu75, 0st75].

1Called after a mathematican who described this peculiar partition of space
in the beginning of our century. Its elements (the Voronoi cells) are also known
as Wigner-Seitz cells.




Chapter 3

Models for Walls, Nodes
and Filaments

In this Section, first the formulae for the different potentials (wall, filament,
node and the potential of the particles) are derived. Then the formulae and
relations for the different energies involved are presented. Finally, the relation
between the model units (dimensionless length scale [/,], dimensionless velocity
scale [v,] and dimensionless time scale [t,]) and physical units are outlined.

3.1 Potentials of Walls, Filaments and Nodes

The potentials of wall, filament, node and the potential of the particles all are
determined (except for a constant) by the equation of Poisson:

Ad=Gp (3.1)

where G is the gravitational constant, p is the mass density and @ is the
potential of a vectorfield

F=-V& (3.2)

A potential always exists if the force F is conservative which can be expressed
by the curl of F to vanish:

curl F = 0 (3.3)

The potential is well-defined for each point an depends only on its coordi-
nates in space. It has units of an energy.

The Poisson equation also is called potential equation or static field equation
and the theory of solving it is refered to as potential theory (cf. e.g. [Kel29]).

In certain symmetric configurations as it is the case for the potentials wall,
filament and node we can solve Eq. 3.1 by the method of equipotential surfaces.
The method of equipotential surfaces consists in the choice of an appropriate
coordinate system and in the choice of so-called Gaussian surfaces around the




mass density distribution on which the vectorfield remains constant. The Pois-
son cquation then can be solved by integrating it over the volume A included
by the Gaussian surfaces as follows

/(livv(bdszc:(}'/pd3$ (3.4)
A A

using a theorem of Gauss ! that in 3 dimensional euclidian space states that

/ divF(x) d°z = f (F(x), n) dS(x) (3.5)
A dA

where ( , 7t) denotes the oriented projection of the vectorfield F perpendicular
to the surface A of the volume A. Note that we have used in eq. 3.4 the
operator identity A = div V.

For an infinite wall of surface mass density II perpendicular to # we can
choose as Gaussian surface a box of size L%py. We demand L 3> py so that
boundary effects can be neglected. Then we integrate Eq. 3.1 over the box in
cartesian coordinates where we replace the divergence of the force according to
Gauss’s Theorem

faA(F(x), 3)dS(x) = —G I L? (3.6)
where only the surfaces perpendicular to # contribute
2|F|L% = -G 1 L? (3.7)
or, equivalently
Fi= —%I—]- sgn(z) (3.8)

where sgn denotes the sign-function.
The potential can be found by integrating over z to be

Gl
b — = |z (3.9)

We thereby demanded the potential to vanish at z = 0. Introducing a
softening length b to make the potential smooth we write:

o, = %\/ z2 4 b2 (3.10)

Therefrom we derive the force field F = (F;, Fy, F;) of the softened potential:

e teaoill o8 %
EE 2 Vr? b2
Fei=
Fpo=0 (3.11)

'Also called Divergence Theorem or Green’s Theorem.




For the infinitely elongated filaments of line mass density = along Z we use a
cylinder of length L and radius py as Gaussian surface. We again demand that
L > po so that we neglect boundary effects. Integration of Eq. 3.1 in cylindrial
coordinates using Gauss’s Theorem gives

2npoL |F|=-GEL (3.12)
or, equivalently

G=
R (3.13)

which we integrate in cylindrial coordinates introducing a softening length b

®; = %m\/muy? F b2 (3.14)

where we have changed to cartesian coordinates by p? = z% + y>. We
demanded the potential to be equal to 1 on the surface 2. For the vectorfield,
we derive

T e MOE R I 1 (3.15)
2w /w2+y2+b2

F, = n G Sy B (3.16)
2w \fz? + y? + b2

Bl (3.17)

The node as well as the potentials of the particles are modelled by a point
mass. The corresponding Gaussian surfaces are the spheres centered at the point
mass. We integrate the Poisson equation in spherical coordinates by means of
Gauss’s Theorem to

47 |F|= -G M (3.18)
or, equivalently
GM
nly e S 3.19
47r? (8.19)

Integrated in spherical coordinates and softened by a softening length & we
obtain the potential of Plummer spheres which is in cartesian coordinates (r =
z? + y? + 22) given by

_G'M 1
dm Sz 4 y? 4 22 4 b2

where we demand the potential to vanish at infinity. For the vectorfield we
derive

¢, = (3.20)

2The surface consisting of all points where a quadratic form uz?+vy? +wz?+b
vanishes is also refered to as quadric or hypersurface of 2nd order. It here exists
only for b < 1 and consists of a cylinder of radius b.




tGM

e (3.21)
4 (22 4+ y? + 2% + bz)3/2
yG M r
By = e (3.22)
dm (2?2 + 2 + 22 + b?)
M
Be < (3.23)

4 (z? + y? + 22 + b2)3/?

3.2 Energy, Dissipation and Momentum

The equations of motion for each particle are directly obtained by summing
over the forces due to the central potential (wall, filament or node) and over the
contibutions of all other particles attributing a dissipational term

dv
Fq= o= =N (3.24)

with the viscosity between two particles (‘galaxies’) defined by

ez = 16/37%log A G*myms (512622)_3/2 (012022)_3/2 X
I v?
i 3.25
st (512+522+‘712+0'22) =)

where we will assume equal masses of the particles m = m; = ma, identical
core sizes § = §; = &2 and identical internal velocity dispersions ¢ = o) =
o2. The strength of the viscosity is scaled by the Coulomb logarithm logA.
The viscosity depends exponentially on the distance R between the particles in
location space and on their distance V' in velocity space. The justification for
this equation can be found in the Appendix.

The total energy £ of our system is given by the kinetic energy of the N
particles

oy

By = :

(3.26)

[~1=

i=1
and by the potential energy of the particles according to the central potential
(wall, filament or node)

N
Ep= ®ugnlxi) (3.27)

i=1

and by the self-energy which we define to be the field energy due to the
gravitational field of the particles. We obtain it by summming the contributions
of each particle to the potential field of the sample




N
)

N
(k) TY5)
’;UE! \JTE 0
>
—

T

0| Q

Bai= =

MGy (3.28)

i<k \JTE + b2

E=FE.+E,+E, (3.29)

where E, has to be evaluated for wall, filament or node respectively.

The total energy would only be conserved in a conservative system, that is
without the dissipational term 3.24. It is therefore useful to define a differential
dissipational energy as

= -G

Hence we write

dEd = Fd([x (330)
where Fj is the dissipational force 3.24 and dx denotes the line-element.
In the numerical model dx is linked to the global time step so that it is not
infinitesimal. One may expect that as long as the dissipational energy does not
change over magnitudes, Eq. 3.30 will give a good estimate of the energy being
lost due to dissipation.
We now can define a quantity

1
E'= By + E, + E, +f dE4(t) (3.31)
to

which is conserved in time as long as the dissipational energy changes mod-
erately.

We calculate a kinetic temperature T from the arithmetic velocity mean
according to

IR—

™|

7? 52 (3.32)

In case of a maxwellian velocity distribution, T actually defines the thermo-
dynamic temperature of the particles. Apart from constant factors, Eq. 3.32
is a direct consequence of the equipartition theorem AT o« #2. Since we are
not interested in constant factors, we set the Boltzmann constant £ = 1. Near
equilibrium, we expect that T will steadily decrease corresponding to the dissi-
pational loss of energy. The temperature so defined is by definition correlated
to the kinetic energy. Note that, in case of a maxwellian velocity distribution,
the correlation is 1. In case of a non-maxwellian distribution, the correlation
will differ from 1, even if the deviation is not expected to be large.

We further are interested in the conserved quantities linear momentum

N

EEi= Zm(,-)v,-
i=1

P = |p| (3.33)
10




and angular momentum

N
i — Zrlxm(,-)v,-
i=1
L = |1 (3.34)

to verify the algorithms’ reliability and to separate out numerical effects. A
useful tool to study the energy diagrams will be the relations between potential
energy and kinetic energy after the particles have set into thermal equilibrium.
Those can be derived from the theorem for the virial of Clausius [Go187]

N
T):—%(ZFil‘i) (3.35)

which holds for periodic motion where ( ) denotes the temporal mean over
one period and for ergodic motion where the temporal mean has to be taken
over a sufficiently large time.

In the case of forces derived from a potential Eq. 3.35 can be written

| X
= 3¢ Zv‘bi r; ) (3.36)
1=1

which we evaluate for the potential of the wall to be

Ty =

(3.37)

|
/\.

Note that Eq. 3.37 is proportional to (z). This expresses that the mean
kinetic energy of the particles increases with the mean distance of their trajec-
tories from the wall.

For the potential of the filament we obtain

GZ z0ln/z2+y2+b2 yOln/z2+y% +b2
W =t e Y + )

47 ( Oz Jy
bR e ] (3.38)
471' 1 -+ ($‘+JJ)

so that, if we suppose the temporal mean (b%(z? + y%)~!) to be small com-
pared to 1, the kinetic energy in a logarithmic potential is found to be inde-
pendent of the potential energy. Especially all initial velocity distributions are
“virialized” in respect to the logarithmic potential3.

3But not to the potential of the selfgravitating particles.
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For the node potential and the potential of the particles we obtain

GM d z
T)=—— —
b 8m ((?a; (\/$2+yz+zz+bz)

el
Oy \/J',‘2—+-yz-}-::2-4-1)2

L : )
0z \ \/22+y2 + 22 + b2
1

b2
L+ (Goyern)

1
= —3(®,) (3.39)

which is the virial theorem for Plummer spheres. If we suppose the temporal
mean (b%(z® + y? + 22)~1) to be small compared to 1, Eq. 3.39 reduces to the
virial theorem for an r~! potential:
1
(T) = — (@) (3.40)
For the sake of self-consistency, we have used for the softening length & of the
particles the core size of the galaxies & in all 100 and 1000 particle experiments.
Thereby the softening length of the filament potential and node potential has
been set to 1, whereas in the case of the wall potential a softening (smoothing)
length of size 10=2 has been introduced.

3.3 Scaling

The scaling has been done for the “high attracting” potential experiments with
1000 particles as follows: If we suppose the size of the cube used within the
numerical model to be 100 Mpc, we obtain for the dimensionless coordinates
running from -50...50 as relation between the length units:

1 dimensionless length unit [I,] = 1M pe (3.41)

A given galaxy has size § and mass m, therefore its internal velocity disper-
sion o = /(v?) obeys approximately the relation

5 GM
(v*) = s (3.42)
with G as gravitational constant, 7 as mass of the galaxy and () denoting
the ensemble mean of the velocities. If § were the gravitational radius [Bin87],
Eq. 3.42 would hold exactly as a consequence of the virial theorem 3.40.
If =1 corresponds to 1 Mpe, then

6=1 is a 100 kpe halo  (“big”)
6=0.1 is a 10 kpe halo  (“medium”) (3.43)
6=0.01 isal kpc halo (“small”)

12




According to Eq. 3.42 we can calculate the corresponding velocity dispersions
to be ‘

oc=3.2 for big halos
o =10 for medium halos (3.44)
c =32 for small halos

We extend these definitions to

1 “big’}
6=0.1 o= 3.2  “medium”

10 “small”

§=001 o={ 10 (3.45)

§=0.001 e=1<¢ 32
100

where we have introduced small, medium and big internal velocity disper-
sions which we have expressed in dimensional velocity units [vy].

Because our particle density is much less than the density n of galaxies in
a real cluster, we would underestimate the mean free path of a particle while
determining the size of a model galaxy correspondant to the size of the cube.
We therefore correct for the particle density:

N )
n= s (3.46)
where L denotes the size of the structure and N denotes the number of
particles.
We do this correction while introducing a second length scale A
= BN R (3.47)

to describe the particle density. In a 100 Mpc structure, we may expect 10°
galaxies, whereas we use only 10% galaxies in our model. We correct by

106 1/3

so that, where we used § = 0.1, we correct for the second length scale to

6=1hby

13




1 “big”
6=1 “big” c=<¢ 3.2 “medium’
10 “small”
3.2
§=0.1 “medium” o=¢ 10 (3.49)

»

§ =0.01 “small” o= 32

A galaxy velocity dispersion of 250 km s~! (which is about equal the velocity
of a typical star [Egg62]) hence corresponds to 10 units [t,] (medium):
1 dimensionless velocity unit [v,] = 25km s™! (3.50)

We estimate the velocity dispersion o in a cluster of size 3 Mpe consisting of
10 galaxies to be 3 times (= v/10x) as large, that is 30 units [v,]. We therefrom
obtain a timescale by evaluating

VG [z = e

to

1 dimensionless time unit [t,] =

16 25km s-!
1 1Mpe

E 1 1Mpec
40 1Gyr

= 25Gyr (3.52)

R

In all diagrams, 1 dimensionless time unit [t.] correponds to 10 units on the
time axis, for the time step size was 0.1 for all calculations. Therefore, according
to the scaling the time runs from 0 to 10 Gyr for all calculations (except for the
program tests in the Appendix).

14




Chapter 4

Flow of Particles in the
Models

In this Chapter, the experiments performed with 1, 10, 100 and with 1000
particles are described.

4.1 Experiments with One Particle

First we want to consider the motion of a single particle in phase-space in the
three geometrically different dilutions (wall, filament and node) respectively.
The Figures 1...3 show the flow of a single particle, started with initial zero
velocity from (1,0,0) (cartesian coordinates). The location z is plotted versus
the velocity vz. Equal spacings between points in the diagrams correpond to
equal times for the particle to pass from one point to the other. Note that the
velocity axis scale for the three potentials differs; For the filament potential,
near the singularity of the potential the highest velocities appear. The maximal
velocity of the particle in a wall potential is a factor 2 higher than that in a
node potential, but is still at least 10 times less high than the maximal velocity
in a filament potential.

The diagrams for the node potential and for the filament potential were
calculated with each 200 steps in time (of size 0.1). For the node potential,
120 steps in time (size 0.1) were calculated. Thereby the calculation of the
particle motion in the wall potential has been done over one period, in the
filament potential over 8 periods and in the node potential over 3 periods. We
therefrom conclude, that the velocity mean of particle flow without dissipation
in the respective potentials is largest for the filament potential, less high for the
node potential and lowest for the wall potential. The relaxation time therefore
should be expected to be shortest for the filament potential, higher for the
node potential and most high for the wall potential. In the experiments with
randomly distributed initially “frozen” start of particles, we will see that this
expecation is not fulfilled due to momentum creation effects dependent on the
interaction of the particles in phase-space: Higher velocities will lead to a higher

15




amount of momentum created, therefore the relaxation time will be found to be
highest for the filament potential.

For the filament potential, a subset of points lies in a low velocity region
(namely points far from the potential). Also for the wall potential, the points
elongate in velocity space only linear in location space from the region of low
velocity to the region of high velocity towards the center of the potential. We
therefrom expect in the case of the filament potential and the wall potential
that a subset of the particles will be nearly at rest.

Dissipation decreasing with the velocity difference between two particle or-
bits will work most effectively in the outer regions of the filament potential,
whereas near the inner regions the energy loss due to dissipation will decrease
(for particles separated only by a small amount in location space according to
Fig. 2 differ in the inner regions by a large amount in velocity space). The par-
ticles therefore will be slowed down in the outer regions of a filament potential
more effectively than in the inner regions, leaving their orbits they would have
had without dissipation while approaching the potential. Therefrom we expect
the particle orbits to be found attracted by the filament potential, whereas in
the case of the wall and node potential the distribution of particles in space
is expected to be more smoothed out. As we will see, the filament potential
actually tends to attract the orbits of particles .

The Figures 1...3 have been calculated with a potential strength equal to
one particle mass unit [pmu] and with a softening length of 10~'2, choosen 6
magnitudes larger than the minimal substepsize (10~!%) permitted.
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Figures 1...3: Single particle flow in the potentials wall (top), filament
(center) and node (bottom).




4.2 Experiments with 10, 100 and 1000 Parti-
cles

When we want to do calculations with more than one particle, we must care for
the momentum creation eflects as they were already found by Aarseth in the
early days of N-body experiments [Aar62].

A common device to suppress these effects is to introduce a softening length
b to put away the singularity in the center of the particle potential: This length
has to be chosen large enough for the momentum creation effects to be reduced
to an acceptable degree (cf. the “collision”-experiments in the Appendix). The
force-law thereby is only slightly changed at large distances. One obtains the
so-called Plummer-sphere potentials, which can be thought of as a model for
an agglomeration of particles, representing stars or clusters of stars or galaxies.
Notably, a bound agglomeration of particles would show, if it were spherically
symmetric, ezactly the potential of a point mass outside its boundaries. So the
common argument as given above to justify the choice of the Plummer sphere
potential is to be taken as an approximation !.

First calculations were done with a softening length just large enough to
permit the algorithm to overcome singularities. This has been in the cases of
single particle experiments sufficient to reproduce the trajectories well (cf. Figs.
1...3). In the case of a filament potential of 1 pmu surrounded by 10 particles,
the momentum creation effects found by Aarseth have been directly observed:
The Figure 4 is taken from a visualisation of the particles in time; Each particle
is represented by 20 events in time (i.e. it positions at 20 succeeding timesteps).
The particles in the center are orbiting while the two lines leaving to the sides
represent two particles, leaving at same time and in oposite direction. Close
interaction of particles in the orbits round the potential seems to lead to such
“pair-creations”. Hence here the occupation of orbits round the filament decays
1n time.

'For we do not exactly know where the galaxies discontinue, we wont WOITY
much about this approximation.
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Fig. 4: Decay of orbits round a filament potential due to momentum creation.

The momentum creation implies creation of kinetic energy, as it can be seen
in the Figs. 5 and 6 for a wall potential of strength 1000 pmu. The energy
increases stepwise, as in the case of the filament where every increment was due
to an decay of two orbits, also in this case where the sample size has been much
larger (100 particles).

The same energy diagram for a ten times weaker potential is shown on
the left side (for 10 particles). The visualisation in time has shown that the
particles were running along the wall. The energy of the oscillating particles
(in the wall potential) and the additionnal oscillating kinetic energy (gain due
to to momentum creation and loss due to dissipation) superposes to the beats
apparent in the total energy and in the kinetic energy.

Iigs. 5 and G: Not-softened particles in a wall potential.
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First experiments with 10 particles, softened by a length 10='® (which is
absolutely insufficient to suppress momentum creation and only helps the al-
gorithm not to get stuck in singularities), were performed for a node potential
of strength 10 x the particles size total mass units (“high attracting” potential
strength) and for a node potential of strength 1/10 x the particles size total
mass units (“low attracting” potential strength) and are shown in Figs. 7...9:
The traces of 10 particles in location space show how these particles, started
frozen (initial velocities all zero) in an initial cube of size 2, leave the start region
with an evident high amount of kinetic energy which cannot be explained only
by exchange of potential (self-) energy between the particles. In the case of the
low-attracting node (with a mass of 1 particle mass unit) in Fig. 8 they leave
completely the inner potential region, whereas in the case of the high-attracting
node (100 pmu in I'ig. 7 some of them rest in orbits round the potential of the
node. However, shape and size ol these orbits indicate that the particles have
more energy than they should have according to energy conservation.
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Figs. 7...9: Experiments with 10 particles in “high-attracting” and in “low-
attracting” potentials.




After the particles have been softened with a length b = 1, the experiments
have been repeated for “high attracting” (100 pmu) and “low attracting” (1
pmu) potentials. Fig. 9 shows the “low attracting” experiments on the left side
and the “high attracting” experiments on the right side. The dots again repre-
sent all events (i.e. the positions in space at all times) for 80 equal timesteps.
The wall potential (first row) shows scattering effects (especially for the high
attracting potential). This scattering has been due to the non-smoothness of the
wall potential. The trajectories of the particles in the potentials are all strongly
affected by momentum creation. Because the momentum is no more stepwise
but rather adiabatically enhanced (the mean kinetic energy for comparable ex-
periments did not show discontinuities), the effect is (almost) not visible in the
shape of the trajectories. However, the scattered points round the high attract-
ing filament potential (second row) and node potential (third row) indicate that
scattering in velocity space (momentum creation) occurs.

First I have wondered whether the scatter pattern might be due to bad
determination of the trajectories of the particles. Therefore I have examined
whether a tree code would do better in determining the trajectories. The answer
in case of evaluation of the particle interaction only all global time steps was no
as shown in the Appendix.
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As it was noticed by Aarseth, the individual encounter effects decrease with
N due to the forces acting on a single particle becoming more and more de-
termined by the effective potential rather than by its nearest neighbours with
increasing sample size. In an ellective potential of all particles, the number of
collisions (or close encounters) will be lower, momentum creation therefore will
be less evident than in experiments with only a few particles.

We point out that the momentum creation is truly numerical and has nothing
to do with the modified force-law (due to softening), since the conservation of
momentum follows from the translational symmetry (Galilei-invariance) 2 in
euclidian space and does therefore not depend on the explicit form of the force-
law.

Experiments with softened particles have been performed with sample sizes
of 100 particles. The particles were started “frozen” (kinetic temperature T’ = 0)
equally distributed in a starting cube of size 2. The results are shown in Figs.
10...12. Kinetic energy, potential energy and self-energy have been calculated
and are shown in the right side of the location space diagrams (respectively
below, for the node). As definition for the total energy, the sum of kinetic,
potential and self-energy has been used. The sell-energy of the system decreases
strongly during the first few time-steps. The kinetic energy thereby hardly is
affected. Afterwards, the self-energy increases in time. This is due to numerical
adiabatic momentum creation. I call it ‘adiabatic’ because it seems not to affect
the kinetic energy of the sample. The node still shows pair creation effects.
These effects now do not come from the forces becoming singular — for they all
have been softened — but from an (for small distances) ill defined vector of unity.

After this imperfection was removed, the calculations have been done another
time: The calculated trajectories (all events and 40 time-steps) are shown in
the second column of Figs. 13...15: They hardly differ from the Figs. 10...12.
Only the node has become a bit more quiet. But one must realize that the
initial starting cube (where the particles have been started “frozen”) has had a
size of 2, whereas the apparent trajectories fill a much larger region in space.

2After a theorem by Emilie Noether
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They all hardly differ from each other what indicates, that still numerical effects

are dominating the flow of particles.
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Frorn the previous experiments has been concluded that not only the poten-
tials of the particles, but also the potentials (wall, filament and node) are to be
smoothed, to suppress effectively the momentum creation effects. Since in the
case of the wall potential it is not evident (the wall potential is nowhere singu-
lar), the effect of a not-smoothed wall potential has been investigated separately
and the result is shown in the Appendix.

The Figs. 16...21 show the cumulative distribution of particles for all times,
i.e. for T=1...40, where one unit corresponds to 0.1 dimensionless time unit [t,,]
(= 250 Myr, cf. Section 3.3). The distributions can be interpreted to represent
the probability to find a particle in a given volume within the dimensionless time
0...4 (0...10 Gyr) within the different geometrical dilutions (wall, filament,

node).
The first and second column show the distribution calculated for dissipa-
tional flow (core size § = 1, internal velocity distribution ¢ = 1), whereof

the second column is a magnification of the first column. The third and fourth
column show the same calculations performed for dissipationless flow. The mag-
nification is not set equal for each diagram, but set to the “most interesting”
interior of the corresponding diagrams to the left.

The particles all have been started frozen (kinetic temperature 7' = 0) from
an random equal distribution in an initial cube of size 2. The potential strength
has been “low attracting” in comparision to the self-attraction of the particles.
Therefore the calculations represent a superposition of the collapse and the
characteristic flow of the particles in the respective background potential (wall,
filament, or node).

The effect of the different geometric dilutions is nevertheless visible, in par-
ticular the different “stickiness” of particles inside the potentials is manifested
by the different patterns as they are, in case with dissipation, elongated along
the wall potential, consisting of an asymmetric arrangement of dots in case of the
filament potential and consisting of an asymmetric agglomeration of particles
in the case of the node potential.

The apparent asymmetry in the case of the node potential can be explained
by the potential field energy of all particles brought to the center being about 10
times higher than the potential field energy due to the node potential itself. In
the calculations without dissipation, the central region almost remains empty.

The flow of particles has been studied in $D-space in time within two different
resolutions (whole volume and magnification of the center). In the following I
describe the observation which I have made in case of the “low attracting”
experiments with 100 particles:

Wall The particles collapse to the center, forming an overdense region from
which they escape mainly in y and z direction. Afterwards they oscil-
late mainly singular. The number of free flowing particles has decreased.
The magnification shows: The collapse takes place in two “pulses”. The
particles approach closer in the second pulse than in the first. A part of
the particles forms a dense region during the second pulse and continues
collapsing. Particles coming near this collapse center rush after.

Wall Without Dissipation The particles collapse rapidly. A part of them
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gets dispersed in the 2 direction. Afterwards, the particles escape explosion-
-like in all directions. The magnification shows: During the collapse, for
a very short period, two centers of increased density form. The particles
rapidly escape from these regions leaving empty space. They move very
fast in consequence (high kinetic energy).

Filament The collapse takes place in at least four pulses. A considerable
amount of the particles vanishes in the center. The magnification shows
that in the central region a collapse center is forming, into which the
particles disappear.

Filament Without Dissipation The particles collapse, where the pulses are
clearly weaker (hardly noticeable) in comparision with the pulses described
above. The magnification shows that very early an agglomeration of parti-
cles near the center forms. By further succession of particles an overdense
ring around the potential forms. The particles in the center finally escape,
whereas immedately others rush after. A collapse center does not appear.
The kinetic energy is only slightly enhanced in comparision to the flux in
the wall potential.

Node The particles rapidly collapse into the center where they form a spherical
overdense region. Afterwards, the center of the spherical overdense region
becomes more and more empty. Thereby a part of the particles is thrown
out, but not very far. The particles recollapse to a smaller, denser sphere
and therefrom collapse very fast into a point, as the magnification has
shown.

Node Without Dissipation The particles again collapse to a sphere, the cen-
ter of which is becoming more and more empty. The sphere finally con-
tracts while throwing out particles, finally expands while kinetic energy
increases. The magnification shows that, after an initial agglomeration
of particles has been dissolved, the center of the potential rests of same
particle density than its surroundings.

This observational study can be interpreted as the flow of particles being
dominated by the collapse of the selfgravitating sample dominating the flow in
the respective background potential (wall, filament , node). A large amount of
momentum has been created as can be seen from the energy and momentum
diagrams (Figs. 22...27). As momentum, the absolute (scalar) values have been
used in the Figures. In all cases of potentials (wall, filament, node), the self-
energy Increases much faster without than with dissipation. For the self-energy
is a measure of the mean density of particles near the potential this shows that,
whereas with dissipation several “pulsations” of the particles have occurred,
the particles without dissipation after an initial collapse have been diluted over
a comparatively large region. Kinetic and self-energy are anticorrelated, as
is demanded from by virial theorem of the potentials of the particles. This
is compatible with the potential of the particles dominating the contribution
of gravitational energy from the central potential. The conclusion that the
potentials of the particles dominate the flux in these experiments can be further
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supported by comparing the energy diagrams (Figs. 22...24) with the energy
diagrams in case of the pure collapse (Figs. 34). The momentum diagrams (figs.
25...27) show the increase of momentum being correlated with the pulsations.

In case of dissipation, the creation of momentum is partially canceled by the
dissipational loss of energy.
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Figs. 22...24: Energy diagrams to the 100 particle experiments with
without dissipation.
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The same experiments (100 particles, started “frozen” from an initial cube
of size 2, randomly equally distributed) have also been performed for “high
attracting” potentials (1000 pmu) with dissipation (§ = 1, ¢ = 1) and without
dissipation. The results are shown in Figs. 28...38.

The characteristics of the different geometric dilutions appear stronger as in
the case of the “low attracting” calculations. The filament potential attracts
clearly higher (Fig. 29a.) than the wall potential (Fig. 28a.) and the node
potential (Fig. 30a.). This has been predicted already from the Figs. 1...3.
For wall and filament potential, as it has been the case in the low attracting
calculations, again it is found that without dissipation the particles distribute
over a rather larger area (Figs. 28b. and 29b.). In case of the node (Figs. 30),
apparently no difference between the diagrams with and without dissipation in
location space is seen 3.

The energy diagrams (Figs. 31...33) are clearly distinct from the pure col-
lapse case (Figs. 34) in contrary to the “low attracting” calculations: The kinetic
energy in the case of the wall potential (Fig. 31.) and in the case of the filament
potential (Fig. 32.) is no more anticorrelated to the self-energy of the particles.
The self-energy still increases in time due to the effect of momentum creation
(Figs. 31...33). The effect of dissipation is not as clearly distinct with and
without dissipation as was the case in the diagrams for the “low attracting”
calculations, but still a difference is visible. In the case of the wall potential,
after 20 timesteps (2 dimensionless time units) a quasiperiodic motion sets in.
For the filament potential the pulsations due to the initial collapse of the parti-
cles also have strongly diminished after 20 timesteps; The energy increase due
to momentum creation is higher than for the wall potential. A comparatively
high energy gain but a very short period of initial collapse is shown from the
diagrams for the node potential (Figs. 33).

The kinetic energy in case of the wall potential is anticorrelated to the po-
tential energy as is demanded by the virial theorem for the wall. The kinetic
energy for the filament potential is about constant as is demanded by the virial
theorem for the filament. The kinetic energy for the node in case without dis-
sipation obeys the virial theorem for the node. This indicates, that the flow of
particles now is due to the background potentials (wall, filament, node) rather
than to the potentials of the particles themselves.

If we compare the kinetic energy with and without dissipation, we find for the
wall potential that the fluctuations and amplitude of the energy both decrease
with dissipation (note the different axis scales of the Figs. 31a. and b.). For
the filament potential, we find that dissipation decreases both fluctuations and
amplitude of the kinetic energy. In the case of the node potential the amplitude
is hardly affected but the fluctuations still are smoothed out by dissipation. We
conclude that dissipation smooths out velocity fields and, in case of filaments

°I admit that this looks as if the Figures both come from the calculation
without dissipation. Unfortunately the data files were lost due to lack of disk
space: To verify this assumption would mean to repeat the calculations which,
for the lack of time, has not been possible. However, the observations in 3D-
space described below are consistent with the the statement that the apparence
of the node in location space does not differ (or at least very few).
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and walls, cools the flow of particles. In the case of the node potential, instead of
cooling the particle flow, the particles collapse adiabatically while maintaining
their kinetic temperature,

The momentum diagrams (figs. 35...37) show that momentumn creation
is damped by dissipation from a factor ~2 (node, Figs. 37) to a factor ~ 3
(filament, Figs. 36). This is contrary to the dissipational effect in the case of
selfgravitating collapse shown in Figs. 38: In case of the pure collapse, the mo-
mentum creation is increased by dissipation insted of decreased (cf. the remark
to the collapse experiments in the Appendix).

Again, as in the case of the “low attracting” potentials, the flow of particles
has been studied in 3D space in time and was observed in the case of the “high
attracting” experiments to be as follows:

Wall The particles collapse rapidly to the center. A ring of enhanced particle
density forms. Therefrom the particles are thrown out along the wall.
A part of them is thrown out in z-direction (perpendicular to the wall).
The magnification shows that the density fluctuates several times (about
5 times), whereby the particles posses high kinetic energy.

Wall Without Dissipation The particles first collapse, then they are thrown
out from the center. In the interior of the evolving “shell” the particles
again form an overdense center, where the density is less high as before.
The magnification shows in the interior a modestly enhanced temperature.

Filament The particles rapidly stream to the center. Some of them are thrown
out very early. A spherical overdense region with highly overdense core is
forming. The particles stream from the shell to the core. Shortly there-
after, the core throws out particles. Those do not reach the outer region
of the now fragmented shell. They recollapse to the interior. The magni-
fication shows that in the interior a collapse center is forming, to which
the particles move.

Filament Without Dissipation First, a spherical overdense region is form-
ing. This region is slowly expanding and finally dillutes. The particles
gain strongly energy. The magnification shows that there is no collapse
center in the interior.

Node The particles form a spherical overdense region. This region pulsates
while throwing out particles from its outer regions. The magnification
shows a collapse center which is rapidly forming, capturing particles.

Node Without Dissipation The particles contract and expand at once. The
kinetic energy is increasing steadily, until a large cloud of rapidly moving
particles is forming. The magnification shows, that no collapse center has

been formed in the interior.
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One of the aims of these experiments is to investigate the effect of dissipa-
tion in the different potentials (wall, filament, node) on velocity fields, i.e. the
velocity distribution of the particles, a sufficently high number of particles to
obtain good statistics is needed. Moreover, as already mentioned to motivate
the 100 particle experiments, the number of close encounters between particles
is expected to decrease with their total number. The effect of momentum cre-
ation therefore can be expected to decrease. For these two reasons, experiments
with sample sizes of 1000 particles were performed. In these experiments, the
energy loss due to dissipation has been calculated for each timestep (cf. Sec-
tion 3.2). Experiments with 100 particles are the magnitude limit where direct
summation is an effective way of doing N-body calculations. Other techniques
(Fourier, Mesh-Code, SPH) then become more eflective. For a review on N-body
techniques see [Sel87].

A third reason favouring 100 particle experiments concerns the necessity (to
obtain “realistic” conditions) to choose the size of the initial starting cube equal
to the size of the cube representing the large scale structure. While doing so,
in the experiments with 1000 particles the periodic boundary conditions for the
first time became effective, suppressing the collapse situation in favour of the
background potentials.

The particles again have been started randomly equally distributed (now
over a volume of size 100) with initially zero temperature. The velocity distri-
bution has been analyzed for each timestep by multi-channel analysis. Because
the initial starting region has increased by a factor 50° in comparision to the
low attracting experiments whereas the number of particles has only increased
by a factor of 10, the dissipational effects were found to be much less dominant
in the diagrams. Shown again are the energy diagrams (Figs. 39...41), the mo-
mentum diagrams (Figs. 43...45) and, additionally, the velocity distributions
at T'=10 and 7' = 40 (Figs. 46...48) [or wall (top), filament (center) and node
(bottom) potential. Further, the energy diagrams for the pure collapse of 1000
particles are shown in the last row of the energy diagrams (Figs. 42).

Both wall and filament potentials show initial pulsations due to the frozen
start of the particles. Kinetic and potential energy are anticorrelated due to the
virial theorem for the wall in the case of the wall potential and due to the virial
theorem for the particles (for the virial of the filament does not contribute) in
the case of the filament potential. The energy diagrams for node and collapse
are hardly distinguishable. There, the particles collapse in several steps. The
kinetic energy therefore increases steadily, as does the differential energy loss
due to dissipation. The kinetic energy loss thereby is totally independent from
the potential energy. For these diagrams as for the previous ones, the total
energy has been calculated as sum of kinetic, potential and self-energy.

The momentum diagrams (Figs. 43...45) again show that dissipation can
compensate for momentum creation. Whereas in the cases of the wall and fil-
ament potentials the effect of dissipation is hardly noticeable (for the particles
are 10 times more far away from each other than in the 100 particles experi-
ments), in the case of the node potential, dissipation smooths out the singular

increments of linear momentum linked to the stepwise decrease of self-energy
(Figs. 41 and 45).
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In all cases, a kinetic temperature of the particles has been calculated (cf.
Section 3.2). As the kinetic energy does, it shows that the flow of particles in a
wall potential and in a filament potential is strongly perturbed by the pulsations
coming from the “frozen” start (Figs. 43 and 44). In the case of the node, the
behaviour is clearly unrelaxed: The particles in the node are becoming “hotter”
in time (figs. 45).

As it can also seen from the velocity distributions: None of the particle
flows reaches thermodynamic equilibrium (LTE) 4 as can be seen from the Figs.
46...48: None of the final velocity distribution (T=40) is maxwellian. The
velocity diagrams (Figs. 46. . .48) later have been replaced by the greyscale plots
Figs. 57...59. We will come to them in the next and last experiments.

1Tor the cases with dissipation, thermal equilibrium of course cannot strictly
be attained. Since the timescale of dissipational energy loss is assumed to be
large, we nevertheless expect an “adiabatic” approach of LTE, i.e. where on
small timescales in comparison to the dissipational timescale the flow is almost
thermodynamic.
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Figs. 39...42: Energy diagrams to the 1000 particle experiments in “low
attracting” potentials with (to the left) and without (to the right) dissipation.
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Figs. 43...45: Momentum diagrams to the 1000 particle experiments in “low
attracting” potentials with (to the left) and without (to the right) dissipation.
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4.3 Experiments with 1000 Particles for Differ-
ent Dissipational Parameters

First ‘realistic’ experiments with dissipation scaled to galactic halo core sizes
(6) and galactic internal velocity dispersions (o) have been performed using
“high-attracting” potentials to maximize the effects of the geometrically differ-
ent dilutions (wall, filament and node) versus the selfgravity of the particles.
1000 particles have been started “frozen” (kinetic temperature T=0), equally
randomly distributed over a cube of size 100 dimensionless length units (100
Mpc) for different dissipational parmeters (6, o). During the calculations, the
velocity distribution has been analyzed using multichannel analysis (within 10
channels) and the dissipational energy loss at each time step has been estimated.
The total energy for these calculations has been defined as sum of kinetic, po-
tential, self- and cumulative dissipational energy as outlined in Section 3.2.

For the periodic boundary conditions favour the background potentials in
comparison to the potentials of the particles, the results are expected to distin-
guish even more clearly between the different potentials than in the case of the
100 particle experiments.

Depending on the parameters core size 4 and internal velocity dispersion ¢ of
the particles, effects already observed in the previous experiments were found.

First consider the three energy diagrams (Figs. 50a to ¢) for large-core sized
galaxies in a background node potential. For low internal velocity dispersion
(¢ = 1), dissipation leads to a stepwise increase of the total energy without
affecting the kinetic energy (‘adiabatic energy increase’). This is assumed to be
due to an overestimation of the energy lost by dissipation. For medium internal
velocity dispersion (o = 3.2), the total energy remains constant, as is expected
by its definition. For high internal velocity dispersion (¢ = 10), the total energy
even decreases. This is assumed to be due to an underestimation of the energy
lost by dissipation. Evidentally, the estimator for the dissipational energy loss
does not work well in all cases. The particles are “cooled” by dissipation as can
be seen while comparing the kinetic and potential energy in respect to the virial
theorem for the node (which is the same, apart from the softening length, as
the virial theorem for the potentials of the particles).

Within these experiments, the positions of the particles in phase space at the
end of the calculations (T=10 Gyr) have been stored and are shown within the
Figs.51...53. The Figures (51...53) all correspond to calculations with medium
core size (6 = 0.1) and medium internal velocity disperion (¢ = 10). But first
consider the corresponding momentum diagrams (Figs. 51a....53a.): In the case
of the wall potential, the kinetic temperature shows a stochastic process with
slightly negative drift (which might indicate dissipation, but is barely present.).
The initial “frozen” start has only brief influence on the motion of particles
in a wall. The axis scale for the temperature had to be chosen more than 10
times higher than the scale height for the filament potential and even 10* times
higher than for the node potential. In the case of the filament potential, from the
temperature behaviour two contractions of the particles can be deduced. Each
contraction therefore is represented by an increase of the kinetic temperature
due to the virial theorem of the potentials of the particles (for the filaments
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do not contribute to the virial). In the case of the node potential, the kinetic
temperature gets two times stepwise enhanced. In between these enhancements,
a steady increase with slope dependent on the absolute temperature (cf. Fig.
42a.) is found which indicates a collapse of the particles.

The distribution in location space is clearly more concentrated in the case
of the filament potential, as it was argued from the single particle experiments
(Fig. 2). The diagrams in location-velocity space represent well the particle
flow found in the one particle experiments, studied in Figs. 1...3: The flow
in the wall consists of a superposition of different single-particle orbits; The
same holds true for the particle flow in the filament. A part of the sample is
at rest, distributed overall in the filament (with a slight enhancement towards
the center) and modestly attracted by the wall in case of the wall potential.
This is not necessarily due to dissipation, since the particle flow, as found from
from Figs. 1 and 2, is expected to have naturally a subset of particles nearly at
rest. The node potential flow again consists of sinusoidal trajectories which due
to the gravitational and dissipational interaction superpose to an excitation of
period L/2 where L = 100 is the size of the considered volume. A part of the
particles is at rest. From a dissipational collapse in which the particles finally
get stuck at the center one would attend that the particles concentrate in the
location-velocity diagram near the center; This is not the case. This again is
in total agreement with the location space diagram, where no enhanced density
near the center is found 3. We therefrom conclude that dynamical friction in
background potentials is to be expected to influence the flow of particles on
large scales, in a different way for each of the different potentials wall, filament
and node.

The Fig. 53d. shows that the strong enhancement of the kinetic tempera-
ture can be understood as a large scattering of the particles in velocity space
(momentum creation); Therefore the kinetic temperature (as well as the kinetic
energy) should be interpreted cautiously.

Figs. 54...56 show the energy diagrams for the different potentials wall
(Figs. 54), filament (Figs. 55) and node (Figs. 56) for increasing internal velocity
dispersion (top to down) and decreasing core size (left to right). In case of the
wall potential, the diagrams hardly differ. Only in case of low velocity dispersion
and high core size (Figs. 54a.b.d.e.) is dissipational loss of energy due to the
“frozen start” visible from the diagrams. In the case of the filament potential,
for low internal velocity dispersions and high core sizes (Figs. 55a. and b.),
overestimation of the dissipational loss of energy leads to an increase of the
total energy over a large timescale. The “bump” found at (T 10) is due to
biased estimation of the dissipational energy loss. This is not too astonishing
in the case of the filament potential, for we have supposed for the estimate of
the dissipational energy to work well, the dissipational loss should not exceed
magnitudes over one timestep (cf. Section 3.2). This condition is least fulfilled
in case of the filament potential. The bump just represents this deficiency of
the estimator during the initial collapse. Kinetic and potential energy again

®As in the case of the filament potential and wall potential, this does not
prove that there is no collapse center, since from the 3D investigations it has
been seen that such a collapse center can have the size of a single point
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are found anticorrelated according to the virial theorem of the potential of the
particles (and for the virial of the filament does not contribute).

The first column of the node potential diagrams was already discussed within
Figs. 50. It is show here to a different axis scale, compatible with the other en-
ergy diagrams for the node potential. For small and medium core sizes, stepwise
increase of kinetic energy can be seen in the diagrams. Since the potential en-
ergy is unaffected by this, we suppose this increase to be due to scattering of
particles in velocity space (momentum creation). The temperature shown in
Fig. 53a. corresponds to the cinetic energy behaviour shown in the center (Fig.
56¢c.). Neither temperature nor kinetic energy therefore can be taken as a reli-
able indicator for the global behaviour of the velocity dispersion, which is our
next interest.
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Figs. 50: Energy diagrams to the 1000 particle “high attracting’

ments:
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The velocity distributions corresponding to the flow of particles in the dif-
ferent potentials are shown in Figs. 57...59 for the wall potential (Figs. 57), the
filament potential (Figs. 58) and for the node potential {Figs. 59) arranged to
decreasing internal velocity dispersion (from left to right) and decreasing core
size (from top to bottom). Horizontally, the velocity axis runs from 1...500 [v,]
in the case of the wall potential, from 1...100 [v,] in the case of the filament
potential and from 1...5 [v,] in the case of the node potential. Recall that
one dimensionless velocity unit [v,] was scaled to 25 km s~!. So the diagrams
represent velocity distributions up to 12500 km s~! for walls, up to 2500 km
s~ for filaments, and up to 125 km s~ for nodes in the Universe.

The diagrams have been performed while two times applying a box-smooth
procedure (which smoothes over a box of given size cf. Appendix) and a applying
a contour-fill procedure afterwards. The number of particles found in a chan-
nel of the discretised velocity distribution is represented by a greyshade scale.
Each second contour line is labeled with its actual number of particles that is
represented by the enclosing contour. The white regions represent more than
120 particles per channel. Therefrom the greyshade goes down by a number of
30 particles per channel per shade-increment.

The plots in case of the wall potential do hardly differ from each other. The
bright islands appearing periodically indicate the underlying stochastic process
which was already concluded from the temperature behaviour. In the plots for
the filament potential, the two pulses coming from the starting conditions can
be resolved in time in velocity space. The second pulse can be seen as due to the
reexpansion of the particles, as it was already observed in the 3D investigations
within the 100 particle experiments. The different dynamical friction parameters
core size and internal velocity dispersion hardly affect the shape of the flow.

This does entirely change in case of the node potential: There, the particles
are found to be decelerated in time depending on the dissipational parameters
core size and internal velocity dispersion. From the diagrams we conclude that
the velocity distribution is more peaked near zero in case of low core size and
high internal velocity dispersion than in case of high core size and low internal
velocity dispersion. So, if one would observe on a large scale in a background
node potential a relatively high amount of galaxies with low propper velocity
against the background moving sample, therefrom a rather low core size & and
high internal velocity dispersion of the individual galaxies could be expected.

SE.g. few or no brown dwarfs distributed in the halo.
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Figs. 57: Velocity distribution greyscale plots to the 1000 particle “high
altracting” experiments:
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Iigs. 59: Velocity distribution greyscale plots to the 1000 particle “high
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[t would still rest a lot of improvements to do for these experiments, until
one could also go into more sophisticaled investigations while studying the effect
of a time varying force-law [Dam90] on the velocity distribution of galaxies in
our Universe.




Chapter 5

Summary of the Results
and Outlook

5.1 Summary of the Results

The three dimensional motion of model galaxies with varying degrees of “stick-
iness” in topologically different background potentials has been studied. This
has been done using an N-body code which therefore has had to be developed
and tested.

The results of the computations have been analyzed in phase-space, 3 dimen-
sional in time and, to separate out numerical effects due to the N-body algorithm
used, the energy and momentum behaviour of the flow of the particles has been
investigated:

1. In the case of dissipation, the creation of momentum in N-body di-
rect summation codes was found to be partially canceled by the dis-
sipational loss of energy. Within the N-body model, the dissipation
therefore has to be regarded as process in competition with momen-
tum creation.

2. We concluded from the phase space analysis that dynamical friction
in background potentials is expected to influence the flow of particles
on large scales, in a different way for each of the different potentials
(wall, filament and node) correspondant to the linear dependency of
kinetic energy in the case of a particle approaching the wall, the ex-
ponential dependency of the kinetic energy in the case of a particle
approaching the filament and the sinusoidual dependency of the ki-
netic energy in the case of a particle approaching the node potential.

3. From the fluctuation and the drift on the kinetic energy behaviour
in case of the 100 particle experiments we conclude that dissipation
smooths out velocity fields and, in the case of filaments and walls,
cools the flow of particles.
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4. Filament potentials were found to attract orbits of particles more
strongly than wall potentials or node potentials.

5. From the velocity distributions of particle flow for different dissipa-
tional parameters (core size and internal velocity dispersion of galax-
ies) we concluded that dissipational effects are most likely to be seen
in background node potentials as they are the clusters of clusters of
galaxies on the scale considered (100 Mpc). There we predicted for
especially for low core sizes and high internal velocity distributions of
galaxies a comparatively high amount of galaxies to move only slow
in comparison to the background.

In a more comprehensed form, the resulting figures had to be reduced to just
the last ones which show the main conclusions most clearly. However, since this
work as a stage is not ment to be published, I have shown more figures than
one ordinary should.

5.2 Outlook

One severe problem still is the large amount of energy created. For the lack
of time it has not yet been investigated (despite of this being an absolute fun-
damental test) whether the creation of energy can totally be explained by mo-
mentum creation. Within the planet experiments the energy creation did not
appear as severe but within the 100 particle experiments the effect of energy
creation must be expected to perturbe the trajectories of the particles strongly.
As already emphasized, the accurate determinition of the trajectories is of high
importance for an accurate determination of the energy lost by dissipation. The
investigation of energy creation is still under way.

The results of these computations may serve as input on future one-dimens-
ional calculations on the CMBR constraints obtained from the satellite COBE.
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Oh ! chez moi, dit le petit prince, ce n’est pas trés intéressant, c’est tout
petit. J'ai trois volcans. Deux volcans en activité, et un volcan éteint. Mais on
ne sait jamais.

— On ne sait jamais, dit le géographe.
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Appendix A

Data Creation and
Analysis

A.1 Description of the N-body code

An N-body code has been written to allow the calculation of particle trajecto-
ries in a background potential, including dynamical friction. The code consists
mainly of twe algorithms: The Bulirsch-Stoer algorithm and the algorithm to
evaluate the forces acting on the particles.

To solve the equations of motion of model-galaxies in a given potential, the
Bulirsch-Stoer algorithm [Pre86] has been used . This algorithm introduces two
different steps in the independent variable (the time): A global timestep, which
has been chosen to be 0.1 dimensionless time units (2560 Myr) and a substep
dependend on the error criterion of the algorithm. The error criterion has been
used as set to default by Press et al. with the algorithm constants EPS = 10~3,
HMIN = 10~!® and H1 = 10~!2 (double precision). For a description of the
error criterion and the algorithm constants see Press et al.

The evaluation of the forces acting between the particles has been done by
a simple direct-summation procedure. Also the dynamical friction has been
evaluated in direct summation once for each global timestep.

The Bulirsch-Stoer algorithm first has been tested in one dimension for one
particle, using different potentials (r%, 7, logr and »~!) and including friction
linear in velocity. Then it has been expanded to do the calculation of 3 dimen-
sional trajectories of N particles.

The Bulirsch-Stoer method is described in detail by Press et al. [Pre8e]. It
is based on an extrapolation of the step size in the independent variable (the
time) to zero, therefore is promised to convert “lead to gold” (after Press et al.
). The behaviour of the algorithm nevertheless has been tested in the case of
more simple experiments. The tests also are described in this Appendix.

The N-body code has been written in FORTRAN 77 and has been executed
on the SUN workstations of Leiden Observatory. Input parameters (constants
for the Bulirsch-Stoer algorithm, friction parameters, initial condition parame-
ters and output formatting parameters) have been provided using parameter files
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which in turn allowed reliable documentation of the experiments: All output of
the program has been stored together with the corresponding input parameter
file, so every program run could be examined with respect to the parameters
actually used.

As initial conditions for the experiments, a starting cube and a tempera-
ture of the galaxies has been set. In all experiments shown in this work, the
initial temperature has been set to zero (“frozen” start). However, the pro-
gram provides an initial maxwellian velocity distribution using the Box-Miiller
procedure [Hon90] which generates Gaussian distributed random numbers by
coordinate transformation (cf. source code) from equally distributed random
numbers. The initial locations all have been equally distributed. As random-
izer, RAN1 from [Pre86] has been used. This procedure allows controlled and
machine-independent randomizing, which means that every program run has
been reproducible and did only depend on the input parameters. The trajec-
tories of galaxies have been restricted to periodic boundary conditions. These
were taken in account as well as for the calculation of the trajectories as for
the evaluation of the viscosity term as for the evaluation of the gravitational
forces acting between the particles. The complete phase space information, i.e.
the velocity distribution of the particles, a kinetic temperature, momenta, the
mean kinetic and potential energy, the self-energy and the differential dissi-
pational energy and algorithm-control variables have been evaluated for each
global time step of the algorithm and were written into Ascii-files, dependend
on the experiments performed.

A.2 The Source Code

In the following, for the sake of verifiability, the source-code is presented. Ad-
ditionally, a typical standard input parameter file is appended at the end.
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A.3 Processing the Velocity Distribution

To create the velocity distribution plots in time, the multichannel-discretised
data first had to be brought to a common velocity-scale, then it had to be
processed for output. The interpolation of the data to a common axis has been
done by a FORTRAN program. The processing and output of the data has been
done by means of an interacting data language. In the following, both codes for
the purpose of verifiability are presented:
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Appendix B

Tests of the N-body Code

B.1 Test of the Algorithms Accuracy

The first test presented concerns the question posed within the 10 particle ex-
periments whether the appearent scatter pattern in velocity space were due to
bad determination of the particles trajectories. The two experiments performed
thereto are shown in in Figs. Ala. and b. for a low-mass wall potential (1
pmu, 10 particles). Fig. (a) is calculated with the Bulirsch-Stoer method ap-
plied for each particle individually; Therefore only the individual timestep of
the particle has been error controlled. Fig. (b) shows the same calculation with
the Bulirsch-Stoer method applied to the sample as a whole, where the error
control was applied in regard to the worst-offender member of the sample. This
in turn has slowed down the computing-time considerabely. The particles have
been started from identical initial locations (for the controlled randomizing, cf.
preceding Section) and show exactly the same trajectories in location space. I
therefore assumed for all following experiments the application of Bulirsch-Stoer
error criterion to the global timestep as sufficient.
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Figs. Al: Test versus results expected from a tree code (cf. text)
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In the case of the application of the Bulirsch-Stoer error criterion to the
worst-offender member of the sample, the algorithm has run with the same pre-
cision as a tree code in case of evaluating the particle interaction only all global
time steps. The main difference to a tree code (for practical applications, the
essential difference) is that a tree code would preselect all necessary calculations
on the substep time-level (where the particles proceed fast in time) from the less
necessary calculations (where the particles are almost static). This saves much
computing time, but is still less fast than the application of the error criterion
(which sets the substep-size) to the global timestep. Moreover, as it would be in
principle possible but very time consuming within the actual strategie to apply
the differential equation solver algorithm to each particle individually, within
a tree code one could evaluate the interactions between the particles on the
substep time level without running into arbitrary high total calculation times.

The result, that the trajectories are found to be equally well calculated as in
case of applying the error criterion to the worst offender member of the sample
of particles, exactly only holds for comparatively ! low density particle flow.
Moreover the question arises whether the estimate of the algorithm accuracy
in determining the trajectories of the particles (solving the ordinary linear dif-
ferential equations) which sets the substep-size does work well or whether the
estimator to set the substep-size has set the substep partitioning same for both
experiments.

'In comparison to high-density regions near potentials for large samples of
particles or strongly attracting potentials, as in the case of the “high-attracting”
experiments.
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number of substeps

800

600

400

B.2 Algorithm-Effort Investigations for a Non-
Softened Wall Potential

While softening the particle potentials, the algorithm showed difficulties in cal-
culating the trajectories for a wall potential. Therefore it has been assumed that
the non-smoothness of the wall potential at z = 0 may cause problems. This
could be proven by comparing the algorithm effort indicated by the number
of successive substeps (NOK) and the number of misguided substeps (NBAD)
which was listed during this test: The Fig. A2a shows the breakdown of the
algorithm while calculating the 15th global timestep for a sample of 100 parti-
cles. Both (NOK and NBAD) control variables scatter to values ~ 1000. Then
the algorithm has stopped with the message: “step size smaller than minimum”
(alternatively: “too many substeps”, depending on HMIN). This is to be com-
pared with the effort for the calculation in a smoothed wall potential shown in
Fig. A2b: The number of sucessful steps slightly varies, indicating the actual
effort to calculate the trajectories. Only a few times, a small amount of “bad
steps” has to be accepted .

Bulirsch-Stoer Effort

Not-Softened Wall (10 pmu)

Bulirsch-Stoer Effort

100 Particles

i Wall (10 pmu) 100 Particles

Figs. A2: Algoritm Effort for a Wall

*Those “bad steps” affect only the time which is necessary to do the cal-
culations. For the corresponding computed results are thrown away by the
algorithm, they do not affect the overall accuracy.
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B.3 Collapse Experiments

Since momentum creation appears strongest for direct encounters whereas in
a large sample of particles only few close encounters are attained, experiments
to distinguish close fast encounters from far gravitational interaction have been
disposed and carried out. To see the effects of close and fast interactions, parti-
cles were studied in direct collision in the so-called Linear Collapse Experiments.
To study the effect of long-range interaction and comparatively slow approxi-
mations, particles were studied while giving them initial angular momentum to
prevent fast approach in the so called Circular Collapse Ezperiments.

Imagine six particles placed on equal distances (1 dimensionless length unit)
to the center, on a ring, forming a hexagon. With initially zero velocity (Linear
Collision, Figs. A3 with dissipation, A4 without dissipation) the particles have
been observed to escape very far (Fig. Ada.). Including dynamical friction the
particles get stopped and return, but momentum creation still occurs (Figs. A3.).
These experiments therefore have shown that dissipational loss of energy can
be compensated by momentum creation effects. The corresponding diagrams
in location-velocity space (Figs. A3b., Adb.) illustrate again the trajectories in
the two different cases (with and without dissipation).

In the experiments with an initial velocity given to the particles less than
the velocity to hold them in (unstable) mechanical equilibrium on a circle (Cir-
cular Collapse, Figs. A5 with dissipation, A6 without dissipation), a paradox
effect occurs: Whereas the purely selfgravitating ring of particles first slightly
collapses, then reexpands to some too large (for energy conservation) but still
modest radius conserving angular momentum (Fig. A7b.), the ring of particles
with dissipation collapses faster, then reexpands again to half its initial radius.
The trajectories thereby form the flower-like pattern shown in Fig. Aba. In sim-
ilar experiments with shorter softening lengths the reexpansion has been found
even larger than the initial radius and even larger than the reexpansion found in
the correponding case without dissipation (Figs. not shown here); Dissipation
can lead to an energy gain due to momentum creation ! However, for the soft-
ening length in use (b = 1), the momentum gain still is modest. The particles
recollapsed and in the following formed the pattern in the center of Fig. Aba.
Again, the trajectories shown in location-velocity space (Figs. A5b. and AGb. )
illustrate the trajectories for the two different cases.

The corresponding energy and momentum diagrams of the experiments (Figs.
A7 to A10) show the creation of momenturn respectively energy wich is sup-
pressed by dissipation.
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Fig. A3 to A6: Location space (to the left) and phase space diagrams (to
the right) for “Collision Experiments” with and without dissipation.
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B.4 Planet Experiments

This experiment to test the algorithm far from singular situations (where the
forces, without softening, would increase to infinity) reminders on the keplerian
problem: One mass has been placed in the center (the potential of a node)
and two partices have been started from 2 = 1 and z = 0.5 (y = 0) to turn
around on different orbits. The potential strength has been set to the strength
of 16 particles (16 pmu) to make the different effects of dynamical friction and
gravitation visible. The result, as it can be seen from the trajectories in location
space (Figs. All to A13), is as [ollows: Without friction, the inner planet gives a
part of its energy to the outer one which orbit thereby becomes more and more
elliptical (Fig. A12). Including friction, (Fig. A13); the inner planet thereby
settles into a lower orbit. Both planets decrease their potential energy in respect
to the motion following pure selfgravitation. The experiment also has been
performed neglecting the selfgravitation acting between the two planets (Fig.
All).

On this problem, for the first time within this work a study on the energy
and momentum has been made (Figs. Al4 to A16): In the case of dynamical
friction (Fig. A16a.), the self-energy of the system decreases, whereas the kinetic
energy of the single planets slightly increases. This, according to the virial
theorem 3.40, is consistent with keplerian motion, including adiabatic decrease
of potential energy 3.

Most interesting for the purpose of the many particle experiments performed,
from the momentum diagrams can be concluded (Fig. A15b.) that momentum
creation occurs even in the case of far gravitational interaction (no need for close
encounter of the particles).

3“A satellite becoming faster while getting decelerated.”
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Appendix C

Modelling Filament
Potentials

C.1 Modelling Filament Potentials

In a first approach, I have tried to develop the potential of filaments in Taylor
series (Fig. A17). Those can be analytically transformed into Fourier space.
However, even taking 12th order Fourier sums, the result not has been con-
vincing: The retransformed functions did not end oscillating in the cube and
were 9 magnitudes too high. The reason therefore is the bad convergence of the
Fourier series via the logarithm. 1 have calculated in 5th. order in the Taylor
serie and 12th. order in the Fourier series (Fig. A18). It cannot be expected
that increasing order does change much of the result.

Afterwards, I have calculated the Fourier coefficients of the logarithm to
higher order (up to 128) numerically. The results are shown in Figs. A19. The
shape of the spectrum does not depend on the number of coefficients (Figs. A19b.
and c.), but a reasonable approach of the logarithm has first been attained while
using 128 coefficients (Fig. A19). Note that, in the case of the 12 coefficients
used in Fig. A18, the Fourier sum at least should somehow represent the Taylor
approximation shown in Fig. A17 (but it does not).
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C.2 Numerical Fourier Analysis

In this Section, the formulae for calculating the Fourier coefficients for filaments
as edges of a periodical cube structure of spatial period 2 ¢ are presented.

The filaments will be modelled by a superposition of softened potentials of
infinite lines of equal homogeneous mass density along the edges of the cubes:

Ps(x) = &1(21) + P2(z2) + P3(z3) (C.1)
where
. o= .
Dy(z1) = oy Iny/az? + b2 (C.2)
G= ST !
®y(zp) = T Iny/z5 + 82 (C.3)
G=
(I’a(:l:;j) = _2? In ’832 + b2 (C4)

with the gravitational constant G, the line mass density = and the softening
length b. We suppose that the origin (0,0,0) lies in the vertices of the periodic
structure.

The dependency of the potentials ®;—; 3 only on one coordinate allows to
do the Fourier transform for each direction separately. Periodicity is obtained
by approximating ®; by the n’th partial sum <D}”)(m) of its Fourier serie. For
we demand symmetry $(z) = &(—z) this is

(n), .\ _ @o = kra .
¢ (z) = 5 + kzlak cos S (C.5)
with the Fourier coefficients
20 k7
ap = —/ Os(z) cos L (C.6)
¢ /g /4

For convenience we have dropped the subscripts 2 = 1...3 at 2. We can
calculate Eq. C.5 by the numerical approximation

s N-1
5 () _ o 5 oo 208
¢ = 5ok Z @k cos — (C.7)
k=1
with the coefficients
N-1
= 2 umk
Gy = “ZO P, cos T (C.8)
evaluated at
P =@plen), zo=wxlN, p=1..N—1 (C.9)
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Appendix D

The Two-Point Correlation
Function

The two-point corralation function is, apart from the velocity fields, another
important tool actually used to describe the distributions of galaxies on large
scales. In principle it is easily to calculate for the numerical data which has
been obtained. Because the limited time for this stage did not allow to do so, I
would like to propose the method here in the Appendix:

The two-point correlation function £(r) (cf. e.g. [Com91]) is defined to mea-
sure the deviation of the probability to find two particles in a volume V located
at R and r from a Poisson distribution

E(ry=n"2(n(R + r)n(R))Rey — 1 (D.1)
where 7 denotes the mean density of particles and <"'>Rev denotes the
autocorrelation of the density distribution.
With &(r) defined by D.1 we can write the probability
n 2
dp = (ﬁ) (n(R +1)n(R)) R ey dVidVs (D.2)
to find two particles in the volumes dV; and dVa respectively, given by the

autocorrelation of the density distribution and proportional to the volumes dV)
and dVs, as

AP (%) (1+€0) )ReydVidVa (D.3)

what alternatively to Eq. D.1 can be used to define £(r). The factor (7 /N)?
gives the correct normalization P = 1.

We can calculate &(r) for the distribution of particles in the potentials of
wall, filament and node numerically along the radial direction within a sphere
{r:r<rn} by
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J-1

(%]

Vv

~ 9
f(?)_—l-i-?,Q—TrN.

(rit1+m) (DA)

[§]

N(ri,rig1) N(r-+ri,r+riq1)
— 1'f_”H —r? (r4rig1)? — (r+ )2
evaluated at » = 7 ...J — 1, where N(r;,7;11) denotes the number of parti-
cles in between (r;, r41), N denotes the total number of particles and V denotes
the volume of the sphere. We therefore use the separation

{T',‘:T,’:ixf/.]'l.:]....]-—l} (D5)

where 2 £ is the size of the large scale structure.

We expect the error Err in evaluating € in the numerical model as long as
the distribution does not differ to much from Poissonian (£ < 1) as inversely
proportional to the square root of the number of particles N found in a volume
element dV:

1
Err « — (D.6)
v N
On the other side, the accuracy Acc in determining € increases proportional
to the square-root of the number of volume elements, hence:

Acc L (D.7)

VN
Therefore the accuracy in total Acc/Err is independent from the choice of
the separation. We choose the equidistant separation D.5 to obtain uniform
resolution.
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